
Increasing EV Integration with Reinforcement
Learning and Distribution Network Reconfiguration

Nastaran Gholizadeh
Department of Electrical and Computer Engineering

University of Alberta
Edmonton, Alberta, Canada

nastaran@ualberta.ca

Petr Musilek
Department of Electrical and Computer Engineering

University of Alberta
Edmonton, Alberta, Canada

pmusilek@ualberta.ca

Abstract—The rapid increase in penetration of electric ve-
hicles demands the widespread installation of fast charging
stations. These stations require a very high level of electrical
power, drastically changing the electrical load profile by increas-
ing its peak. This results in increased system losses and voltage
drops throughout the network and limits the number of electric
vehicles that can charge at the same time. This paper presents
a reinforcement learning-based optimization of vehicle charging
location. This novel approach uses optimal distribution network
reconfiguration to train an electric vehicle charging coordinator,
implemented as a reinforcement learning agent.

I. INTRODUCTION

The increasing popularity of electric vehicles (EVs) re-
quires a sufficient charging infrastructure. However, the in-
tegration of EVs into the power grid poses challenges in
managing the distribution network to maintain the balance of
voltage and demand. Modern EVs use 150-300 kW in fast
charge mode, 124-248 times more than average household
power usage. The existing power system lacks the capacity
to handle the increasing number of high-power EV loads.

One promising approach to support increased integration
of EVs is to optimize their charging location. To this end,
Ye et al. [1] develop a centralized allocation and decen-
tralized execution reinforcement learning (RL) framework to
maximize the profit of the charging station. The centralized
allocation process assigns the EVs to either waiting or charg-
ing spots. In the decentralized execution process, individual
chargers make their own charging/discharging decisions. Shin
et al. [2] proposed a new multiagent deep RL method to
calculate the scheduling solutions of multiple EV charging
stations with a solar photovoltaic system and energy storage
system, in a distributed manner, while handling dynamic run-
time data. To jointly control the entire set of electric vehicles
at once and find the optimal charging policy, Sadeghian-
pourhamami et al. [3] proposed a new Markov decision
process (MDP) formulation in the RL framework, which is
also scalable. Liang et al. [4] maximize the welfare of a
large-scale shared EV fleet operator using deep RL combined
with binary linear programming. The aforementioned studies
ignore the constraints of the distribution system and focus
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mainly on the EV driver or charging station perspectives
of the charging problem. An adaptive decentralized control
algorithm for EVs is presented by Zishan et al. [5]. It relies
on congestion signals generated by sensors deployed across
the network. This model uses multi-agent RL where each
charging point is an independent agent that learns control
parameters using an off-policy actor-critic deep RL algo-
rithm. The main drawback of this method is that it ignores the
ability of the distribution system to perform reconfiguration
and increase its EV capacity while controlling the voltage.

This study presents a deep RL-based model for EV drivers
to determine optimal charging locations while considering
distribution network reconfiguration (DNR). The proposed
model supports drivers in selecting charging spots and en-
hances the power grid’s capacity to accommodate more EVs.

II. EXPERIMENTAL SETUP AND RESULTS

This paper proposes a deep RL-based model to find the
optimal location to charge the EV considering DNR. The
overall framework of the proposed method for EV charging
coordination is illustrated in Fig. 1. The EV charging coor-
dinator first receives the DNR and system load information
from the distribution system operator (DSO), the charging
power data from the EVs, and the location of the charging
station plus their availability data from the charging station
operators. Then, based on this information, it determines the
best charging station for each EV to reduce system loss, meet
voltage constraints, and increase the number of EVs that can
fast charge at the same time. In this context, the EV charging
coordinator is referred to as the agent, and two RL algorithms
named deep Q-learning (DQN) and dueling DQN (DDQN)
are used to train it. It should be noted that in this study, the
DSO performs optimal DNR using a pre-trained DSO agent.

In this paper, the ultimate goal of finding an optimal
EV charging location is to minimize total line losses and
to control the voltage limit so that more EVs can charge
simultaneously. Therefore, the reward function is defined as

R(st, at) = −Clplt(st+1)− Cv(st+1). (1)

In this equation, the first term represents the total line
losses of the system plt(st+1) in state st+1 multiplied by
a penalty term Cl with units of [1/kW]. The second term,
Cv(st+1), is a penalty for violating the system’s voltage



Fig. 1. System Architecture

constraints. After training, the agent learns the value of each
action in a given state. Therefore, in each state, charging
stations can be ranked from the most suitable to the least,
based on the action value. At this point, the capacity and
availability of each charging station are checked. If a station
is not available, or it does not have enough capacity, the agent
is not allowed to choose it.

The lower and upper voltage bounds are assumed to be
0.93 p.u. and 1.07 p.u., respectively, in the 33-bus system, and
0.95 p.u. and 1.05 p.u. in the 136-bus system. The parameter
Cl in (1) is set to 10,000 and Cv to 1,000,000 × voltage
deviation. The charging station locations for the IEEE 33- and
136-bus systems are considered at buses [7, 20, 25, 33] and
buses [74, 96, 98, 115 ,117, 135], respectively. The moving
average of mean daily rewards for 33- and 136-bus systems
are depicted in Fig. 2 and Fig. 3, respectively. They have an
increasing trend, indicating successful agent training.

To investigate the effectiveness of the proposed method,
the following three case studies were performed:

• Case 1: The distribution system does not perform DNR
and the EV charging station selection is random;

• Case 2: The distribution system performs DNR and the
EV charging station selection is random;

• Case 3: The distribution system performs DNR and the
EV charging station selection is optimized with RL.

Figure 4 compares the number of EVs that can charge at
the same time for the three cases. Additionally, the minimum
voltage values are given in Table I. When DNR is not used,
no EV can charge due to voltage drop in both the 33-bus and
136-bus systems. For the 33-bus system, training the agent
with the DQN algorithm yields an increase in the number of
EVs that can charge simultaneously from 3 to 5. However,
the DDQN algorithm is not successful in assigning charging
locations to EVs. This can be attributed to the fact that the
DNR strategies found by DDQN are suboptimal. Similarly,

Fig. 2. 60-step moving average of mean daily rewards for 33-node system

Fig. 3. 60-step moving average of mean daily rewards for 136-node system

Fig. 4. Number of EVs integrated in Cases 1-3

TABLE I
SYSTEM VOLTAGES IN CASES 1-3

Algorithm
Test System

33-node 136-node
DQN DDQN DQN DDQN

Case 1 0.910 0.910 0.915 0.915
Case 2 0.934 0.940 0.950 0.951
Case 3 0.936 0.935 0.950 0.948

the DQN algorithm performs well in the 136-node system
and increases the number of EVs that can be simultaneously
charged from 1 to 3, while the DDQN algorithm does not
properly train the EV charging coordinator.

III. CONCLUSION

A reinforcement learning-based algorithm was proposed to
optimize the selection of charging stations for EVs consider-
ing DNR to increase simultaneous fast charging. Using DQN,
the charging coordinators improved the integration of EVs by
at least 66.67% for the 33- and 136-bus systems compared to
random charging locations. However, the DDQN algorithm
did not perform well.
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