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I. INTRODUCTION

This paper deals with a low-rank matrix completion, which
is a problem of estimating missing entries in a given low-
rank matrix and has various applications in the field of
signal processing such as collaborative filtering,and signal
recovery problems.While the low-rank matrix completion is
formulated as a matrix rank minimization problem, it is NP
hard in general, and hence it is relaxed to a nuclear norm min-
imization problem [1], which is a problem of minimizing a
sum of singular values of the matrix. Several algorithms have
been proposed to solve nuclear norm minimization problems
using the SVD based matrix shrinkage approach [2], [3],
and a lot of numerical examples show that matrix shrinkage
approaches achieve good performance.

The SVD based algorithm can be speeded up efficiently
by using GPU computing, however, due to the limitation
of memory on GPU, the SVD cannot be carried out for
very huge matrices. In order to implement a low-rank matrix
completion for very huge and enormous matrices, this paper
proposes a distributed matrix shrinkage algorithm. A large
matrix is divided into smaller matrices, and each of them is
recovered by the matrix shrinkage approach using the syn-
chronization of their singular vectors. This paper also deals
with a low-rank tensor completion, which can be formulated
as a nuclear norm minimization of its mode-k expansion,
and applies the proposed distributed algorithm. Numerical
examples show that the proposed distributed algorithm works
well.

II. PRELIMINARIES

A. Low-Rank Matrix Completion

Most low-rank matrix completion algorithms have been
proposed based on the following nuclear norm minimization
problem,

min ∥X∥∗ s.t. Xij = X̄ij ∀ (i, j) ∈ Ω, (1)
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where ∥ · ∥∗ denotes the nuclear norm of a matrix, X ∈
RM×N is a design variable, M ≥ N , Xij denotes the (i, j)
entry of X , X̄ij is a given constant, and Ω denotes a index
set of known entries of X . To obtain a solution of (1) several
algorithms take a matrix shrinkage approach, and this paper
focuses on the fixed point iterative algorithm [2] shown in
Algorithm 1, where Sν denotes the soft matrix shrinkage
operator defined by Sν(X) = Udiag((σ1 − ν)+, . . . , (σN −
ν)+)V

T , where diag(a1, a2, . . . , aN ) denotes a diagonal
matrix whose diagonal elements are a1, a2, . . . , aN , U
and V respectively denote matrices of left-singular vectors
and right-singular vectors of X , σi denotes the ith singular
value, and (a)+ = max(a, 0).

B. Low-Rank Tensor Completion

This paper deals with the Tucker rank of tensors and a low-
rank dth-order tensor P ∈ RM1×···×Md which can be de-
composed as P =

∑r1
i1=1 · · ·

∑rd
id=1 Gi1,...,ida

(1)
i1
⊗· · ·⊗a

(d)
id

with a core tensor G ∈ Rr1×···×rd and vectors a
(k)
ik
∈ RMk ,

ik ∈ {1, . . . , rk}, for each k ∈ {1, . . . , d}, where ⊗ denotes
the Kronecker product. Let P(k) ∈ RMk×Πm̸=kMm denote
the mode-k expansion of P . Then we have that rankP(k) =
rk, which implies that we can recover a low-rank tensor by
solving the nuclear norm minimization problem of its mode-
k expansion as follows,

min
d∑

k=1

∥P(k)∥∗ s.t. Pi1,...,id = P̄i1,...,id ∀(i1, . . . , id) ∈ ΩP ,

(2)
where ΩP denotes a index set of known entries of P .

III. MAIN RESULTS

Suppose that X ∈ RM×N (M ≥ N) can be divided into
L matrices as X = [X1 X2 . . . XL], where Xi ∈ Rm×N

and M = mL. Denoting a matrix of left-singular vectors
and singular values of Xi by Ui = [ui

1 ui
2 . . . ui

M ] and
σi
1 ≥ σi

2 ≥ . . . ≥ σi
M , respectively, let the SVD of Xi

be given by Xi = Uidiag(σ
i
1, σ

i
2, . . . , σ

i
M )V T

i . If X and
Xi’s have the same rank r for all i, the space spanned



Algorithm 1 Fixed point iterative algorithm.
Require: X0, ν, X̄

1: X ← X0

2: repeat
3: Xij ← X̄ij for all (i, j) ∈ Ω; X ← Sν(X)
4: until converge

Ensure: X

Algorithm 2 Distributed matrix shrinkage iterative algorithm.
Require: X0, ν, α, L, T, X̄,Ω

1: X ← X0

2: repeat
3: [X1 X2 . . . XL]← X
4: for i = 1 to L do
5: for loop = 1 to T do
6: [Ui, σi

1, . . . , σi
N , Vi]← SVD(Xi)

7: r ← maxi(argmaxl σ
i
l subject to σi

l ≥ ασi
1)

8: Wi ← 1
L [
∑L

j=1 U
r
j U

r
j
TUr

i

∑L
j=1 Ũ

r
j Ũ

r
j
T Ũr

i ]

9: Xi ←Widiag([(σ
i
1 − ν)+ . . . (σi

N − ν)+])V
T
i

10: end for
11: end for
12: X ← [X1 X2 . . . XL]; Xi,j ← X̄i,j ∀(i, j) ∈ Ω
13: until converge
Ensure: X

by ui
1, ui

2, . . . ui
r is equal to the space spanned by

uj
1, uj

2, . . . uj
r. This implies that ui

1, ui
2, . . . ui

r are
obtained again by projecting them onto the space spanned by
uj
1, uj

2, . . . uj
r. Therefore, if rankX = rankX1 = . . . =

rankXL, it holds that ui
p =

∑r
q=1(u

i
p
T
uj
q)u

j
q for any i and

j. This equation can be rewritten using Ui and Uj as Ur
i =

Ur
j U

r
j
TUr

i . Similarly, focusing on the null space spanned by
ui
r+1 ui

r+2 . . . ui
M , we have that Ũr

i = Ũr
j Ũ

r
j
T Ũr

i , where
Ũr
i = [ui

r+1 ui
r+2 . . . ui

M ]. Summing up these equations
from j = 1 to L, we have that Ur

i = 1
L

∑L
j=1 U

r
j U

r
j
TUr

i and
that Ũr

i = 1
L

∑L
j=1 Ũ

r
j Ũ

r
j
T Ũr

i . Based on these equations, this
paper provides the following problem,

min
L∑

i=1

∥Xi∥∗ s.t. Xi,j = X̄i,j ∀(i, j) ∈ Ω

Ur
i = 1

L

∑L
j=1 U

r
j U

r
j
TUr

i ∀i = 1, . . . , L,

Ũr
i = 1

L

∑L
j=1 Ũ

r
j Ũ

r
j
T Ũr

i ∀i = 1, . . . , L,

and a distributed matrix shrinkage iterative algorithm for the
above problem is proposed as shown in Algorithm 2. Using
this algorithm, this paper proposes Algorithm 3 for a low-
rank tensor completion based on (2).

IV. NUMERICAL EXAMPLES

This section gives numerical examples applying Algo-
rithm 3 to the 3rd-order tensor completion. All numerical
examples were run in MATLAB 2022b with Parallel Comput-
ing Toolbox on a single GPU of an NVIDIA GeForce RTX
3090 with 24GB memory. A low-rank 1, 000×2, 000×1, 000
tensor Ptrue is given by a core tensor G ∈ R3×5×10,

Algorithm 3 Low-rank tensor completion algorithm.
Require: P0, ν, α, L, T, P̄,ΩP

1: P ← P0

2: repeat
3: for k = 1 to d do
4: X ← the mode-k expansion of P
5: do lines 3-11 in Algorithm 2
6: end for
7: Pi1,...,id ← P̄i1,...,id ∀(i1, . . . , id) ∈ ΩP
8: until converge

Ensure: X

TABLE I
RELATIVE ERROR AND COMPUTING TIME.

L relative error computing time [s]
2 4.755× 10−4 161.1
4 8.492× 10−4 168.4
8 1.080× 10−3 186.9

16 1.568× 10−3 223.6

a
(1)
ik
∈ R1000, a

(2)
ik
∈ R2000 and a

(3)
ik
∈ R1000 generated

using i.i.d. Gaussian entries, and the tensor is regularized
such that its Frobenius norm is equal to 1. The index set ΩP
is generated using Bernoulli {0, 1} random variables where
5% of elements in P are known. For each experiment, we
use the parameters ν = 2 × 10−5/L, α = 1 × 10−3 and
T = 20, and the initial value P0 is provided by substituting
Ptrue
i1,i2,i3

with 0 for (i1, i2, i3) /∈ Ω. To reduce computing
cost, the randomized SVD [4] was applied. Algorithm 3 is
applied with L ∈ {2, 4, 8, 16} for 20 loops, and Table I shows
the results of relative errors ∥P − Ptrue∥F /∥Ptrue∥F and
computing time. Due to the limitation of memory on GPU,
the algorithm with L = 1 cannot be carried out. We can see
that the distributed algorithm work well and that the recovery
accuracy does not get worse so much for larger L.

V. CONCLUSION

This paper dealt with low-rank matrix and tensor comple-
tion problems and proposed a distributed matrix shrinkage
iterative algorithm. The proposed algorithm divides a large
matrix into smaller matrices and applies the matrix shrinkage
approach to them using the synchronization of their left
singular vectors. Numerical examples show that the proposed
algorithm works well for the low-rank tensor completion.
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