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Abstract—We consider a simple three-layer dynamical systems
related to recurrent neural networks. The input to hidden layers
construct an elementary cellular automaton and the hidden to
output layers are one-to-one connection described by a permuta-
tion. Depending on the permutation connections, the network can
generate various periodic orbits of binary vectors. Especially, we
have discovered globally stable periodic orbits such that almost
all initial points fall into the orbits. Based on numerical analysis,
we present an important conjecture for property of globally stable
periodic orbits. This is a first step to consider various periodic
orbits and their engineering applications.

Index Terms—recurrent neural networks, elementary cellular
automata, periodic orbits, stability,

I. INTRODUCTION

Discrete-time recurrent neural networks ([1]-[3]) are char-
acterized by nonlinear activation function and real valued
connection parameters. The dynamics is described by an
autonomous difference equation of real state variables. De-
pending on the parameters, the networks can exhibit various
nonlinear phenomena: multiple fixed points, multiple periodic
orbits, chaos, and related bifurcation. The real/potential appli-
cations include combinatorial optimization problems solvers
[3], associative memories [1], and reservoir computing [4].
The networks are important subject in analysis of nonlinear
dynamics and engineering applications. In the networks, multi-
ple fixed points have been analyzed sufficiently and the results
have contributed to develop applications [1] [3]. However,
analysis of periodic orbits is difficult because of complicated
dynamics for an enormous number of parameters. If periodic
orbits are analyzed sufficiently, the results contribute to further
understanding of network dynamics and real-world applica-
tions.

In this article, we consider periodic orbits in a simple three-
layer dynamical system related to the DT-RNNs: a permutation
elementary cellular automaton (PECA). In the PECA, the input
to hidden layers construct an elementary cellular automaton
(ECA [5] [6]) whose dynamics is governed by rules of Boolean
functions from three inputs to one output. The hidden to output
layers are one-to-one connection described by a permutation
[7]-[9]. The number of parameters is much smaller that that
of usual DT-RNNs, The PECA is well suited for precise
analysis of BPOs and FPGA based hardware implementation
for engineering applications.

As permutation connection varies, the PECA can generate
various periodic orbits of binary vectors (BPOs) that are im-

possible in the ECAs. Especially, we have discovered globally
stable binary periodic orbits (GBPOs) such that almost all
initial points fall into the GBPOs. Real/potential applications
of the GBPOs/BPOs include control signals of switching
power converters [10]-[12], control signals of walking robots
[13]-[15], and approximation signals of time-series [4]. Since
the GBPOs/BPOs are stabile, the control/approximation sig-
nals are robust against disturbance. After trial-and-errors, we
present an important conjecture for property of GBPOs. This
is a first step to realize precise analysis of various BPOs and
their engineering applications.

II. ELEMENTARY CELLULAR AUTOMATA

First, we introduce ECAs on a ring of N cells. The
dynamics is described by
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A Boolean function f transforms three binary inputs to one
binary output. For example,

f(0, 0, 0) = 0, f(0, 0, 1) = 1, f(0, 1, 0) = 0, f(0, 1, 1) = 1
f(1, 0, 0) = 1, f(1, 0, 1) = 0, f(1, 1, 0) = 1, f(1, 1, 1) = 0

Decimal expression of the 8 outputs is referred to as the rule
number (RN). In this example, (01011010)2 = 9010 gives
RN90. Fig. 1 shows ECA of RN90 and a BPO with period 7.

III. PERMUTATION ELEMENTARY CELLULAR AUTOMATA

Applying permutation connection to the ECA, the PECA
is constructed. The dynamics is described by the following
autonomous difference equation of binary state variables.
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where yt
i ∈ B is the i-th binary hidden state and σ is

a permutation. As shown in Fig. 2, the input to hidden
layers construct an ECA and the hidden and output layers
are connected by a permutation. The permutation connection
transforms the binary hidden state vector yt into the binary
output vector xt+1. For convenience, Eq. (2) is abbreviated
by xt+1 = F (xt). xt ≡ (xt

1, · · · , xt
N) ∈ BN where BN

is the set of all N -dimensional binary vectors. The PECA



Fig. 1. ECA and BPOs with period 7 for RN90. The white and black boxes
denote xt

i = 0 and xt
i = 1, respectively.

Fig. 2. PECA and GBPO with period 63 for RN90 and P1234675.

Fig. 3. Binary periodic orbit (BPO) and eventually periodic points (EPPs)

is characterized by the rule number (RN) and the permutation
identifier Pσ(1) · · ·σ(N) (PID). The RN and PID are regarded
as parameters of the PECA. We give fundamental definition.

Definition: A point zp ∈ BN is said to be a binary periodic
point (BPP) with period p if F p(z) = zp and F (zp) to F p(zp)
are all different where F k is the k-fold composition of F . A
sequence of the BPPs, {F (zp), · · · , F p(zp)}, is said to be a
BPO with period p. A point ze is said to be an eventually
periodic point (EPP) if ze is not a BPP but falls into the BPO
(see Fig. 3). Let q denote the number of EPPs to a BPO. As
q increases, stability of the BPO becomes stronger.

We have investigated various BPOs and a typical example
is shown in Fig. 2: a 7-dimensional BPO with period p =
63 and q = 63. In the PECA, two end points (all 0 and all

1) are either fixed points or periodic points with period 2.
Except for the two end points, half of (27−2 = 126) elements
constructs the BPO and the other half elements are EPPs to
the BPO. Such a BPO is referred to as a globally stable binary
periodic orbit (GBPO). The GBPO is an important example in
analysis of BPOs and is useful in application because of the
strong stability and long period. The ECAs cannot generate
GBPOs. In order to realize analysis of various BPOs and their
applications, now we are trying to prove the following.

Conjecture: Let dimension N be odd and let the rule
number be RN90. As PID varies, the PECA generates various
BPOs where period p and the number of EPPs q = p. The
BPOs include the GBPO with p = q = (2N − 2)/2.

IV. CONCLUSIONS

The PECAs are introduced and typical GBPOs are demon-
strated in this article. Adjusting global permutation connection,
the PECA generate various BPOs. After trial-and-errors, we
have presented an important conjecture for the GBPOs. Future
problems are many, including the following: (1) Proof of the
conjecture. (2) Mechanism to reinforce stability of GBPOs.
(3) Real/potential engineering applications of GBPOs such
as robust control signals of switching circuits and robust
approximation signal of time-series.
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