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Abstract— Situations of high cognitive workload can induce 
errors. This is widely prevalent in safety-critical domains where 
operators must make high-stake decisions while facing complex, 
dynamic situations. Therefore, it seems critical to detect 
instances of high cognitive workload to provide timely 
assistance to operators when they face such error-prone 
situations. This, however, requires capacities for real-time 
evaluation, which can be performed using brain-computer 
interface systems driven by measures of the central nervous 
system. Functional near-infrared spectroscopy (fNIRS) 
measures have been shown to be associated with variations in 
cognitive workload, but these are typically processed and 
analyzed offline in a post-hoc fashion. Besides, to be used in 
operational situations, workload evaluation should be 
performed with mobile devices, supported by edge-computing 
devices. The goal of this paper is to present the first steps toward 
a real time, mobile assessment of cognitive workload using 
fNIRS data. We present two models developed using the Open 
Neural Network Exchange format that allows edge inference of 
cognitive workload with fNIRS data. We present prediction 
performance of the models and show the possibility to integrate 
the model into the Sensor Hub platform, a real-time sensor-
agnostic data integration, synchronization, and processing 
nexus that allows sampling data from multiple sensors and users 
simultaneously for operational use cases. More specifically, we 
show that the model can produce workload inference from the 
fNIRS signal within the one-second latency requirement of the 
Sensor Hub platform.  
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I. INTRODUCTION 

Human cognitive resources have been widely shown to be 
limited. Cognitive workload represents the association 
between the amount of mental processing resources and the 
amount required by a task [1]. When demands exceed the 
amount of resources available to process information, errors 
can occur. Cognitive workload can be a key component for 
safety-critical operational domains (e.g., in aviation, defence, 
driving, or command and control) where high-stake decisions 
must be made in highly complex situations. Functional near-
infrared spectroscopy (fNIRS), a low cost, portable system 
allowing for measures of brain blood oxygenation can be used 

to measure brain activity according to variations in cognitive 
workload [2]. It uses near-infrared light to determine changes 
in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR). 
Proportion of hemoglobin saturation in tissue (StO2) can also 
be calculated. This study presents the first step towards real-
time, edge-computing assessment of cognitive workload with 
fNIRS data. Our study optimizes the implementation of our 
model with the Open Neural Network Exchange (ONNX) 
format, which is integrated into a Java-based platform 
allowing for which allows for a complete pipeline from signal 
acquisition, signal preprocessing, feature extraction and 
selection, to modelling and model deployment, onto wearable 
devices. To reach this goal, we report two proof-of-concept 
machine-learning models to show our capability to predict 
cognitive workload from measures collected from an fNIRS 
mobile device while participants performed a task involving 
two levels of cognitive workload during an n-back task. 

II. METHOD 

Eight participants performed dual n-back, i.e. a working 
memory task that requires responding when a given visual 
and/or audio stimulus presented is the same as the one 
presented n positions before. On each trial, squares were 
presented sequentially for 500 ms, with an inter-stimulus 
interval of 2,500 ms, within a 3 × 3 matrix on the computer 
screen. A letter was concurrently spoken in the speakers. In 
the 1-back condition (low load), participants were asked to 
respond when a square was presented at the same position as 
the trial before and when the letter spoken in the speakers was 
the same as the one presented the trial before. In the 2-back 
condition (high load), the same was asked but with two trials 
before. Participants pressed the “A” key on the keyboard for 
the visual targets and the “L” key for the audio targets. 

Participants’ brain activity was measured with the Artinis 
OctaMon fNIRS. As shown in Fig. 1, the device is composed 
of eight transmitters (Tx), transmitting two wavelengths 
(±760 nm and ±850 nm), and two receivers (Rx). The OxySoft 
software provided by Artinis collected the raw data from the 
fNIRS and was used to inspect the data prior to signal 
processing. Then, the data was preprocessed. The OxySoft 
software applies an algorithm based on the modified Beer-
Lambert law in order to transform the raw signal into 



concentration change in hemoglobin. The fNIRS signal was 
also passed through a third-order digital Butterworth filter 
with a low cut-off 0.008 Hz and high cut-off 0.2 Hz [3].  

 
Fig. 1. Optode placement for the transmitter (Tx) and receiver (Rx).  

The following features were extracted: i) HbO2 values for 
each optode; ii) HbR values for each optode; iii) StO2 values 
for each optode; and iv) mean StO2 by sub-regions with mean 
saturation for the right PFC (Subregion A with Tx1, Tx2, Tx3 
and Tx4), median PFC (Subregion B with Tx1, Tx2, Tx4, 
Tx5, Tx6 and Tx8), and left PFC (Subregion C with Tx5, Tx6, 
Tx7 and Tx8). Forward sequential feature selection followed 
by random-search based hyperparameter tuning was applied 
to identify the best set of features and hyperparameters using 
the leave-one-out method (K-fold = 8) for comparing accuracy 
of the random forest models generated.  A second random 
forest model was also developed using moving time windows 
of 20 sec (with a hop size of 1 sec) for extracting and 
transforming the fNIRS signal into mean, kurtosis and 
skewness values. To validate significant connection between 
the data and class labels, we ran permutation tests where the 
final model selected was trained and evaluated with 100 
permutations of the class labels using scikit-learn [4]. The 
model characterized by the best performance was then 
extracted to the ONNX format. The ONNX model pipeline 
(pre-processing and feature extraction) was implemented in 
Java to be fully operational within the Sensor Hub [5], a real-
time sensor-agnostic data integration, synchronization, and 
processing nexus that allows sampling data from multiple 
sensors and users. This allowed for a proof-of-concept for 
providing real-time workload assessments using data 
collected by the fNIRS headband. 

III. RESULTS AND DISCUSSION 

Results on the dual n-back task showed that the two load 
tasks induced the anticipated effects. Indeed, the mean 
performance for the low load condition (1-back), 94.81% (SD 
= 6.19), was significantly inferior to that of the high load (2-
back) condition, 69.94% (SD = 15.49), p = .012. Such a 
difference supports that participants faced higher workload in 
the 1-back condition, compared with the 2-back condition. 

The best model produced with the leave-one-out approach 
was comprised of only the HbR values of the eight optodes. 
The model reached a prediction accuracy of 62.5% following 
forward sequential selection procedure of the three best 
features (Tx8 [β = 0.41], Tx7 [β = 0.36], and Tx3 [β = 0.23]). 
A permutation test ran on 100 permutations of the class labels 
suggested a significant connection between the data and labels 
(p = .009). The mean, kurtosis, and skewness of the three 
features selected by the previous model were calculated 
within the 20-sec epoch. Of the resulting nine features, the 
following were empirically selected, leading to a prediction 

accuracy of 66.9%: Tx8_Mean (β = 0.43), Tx8_Kurtosis (β = 
0.29), and Tx3_Kurtosis (β = 0.28). Permutation tests 
supported the model’s ability to provide significant 
classifications (p = .01). This outlines the possibility to predict 
two cognitive workload levels from fNIRS measures. The fact 
that these models were reached with very few participants also 
provide support for the validity of this approach. Besides, the 
importance ascribed to the Tx8 and Tx7 optodes is consistent 
with previous literature outlining important activity in the left 
prefrontal cortex in periods of high cognitive workload [6]. 

To test our ability to perform real-time assessments on an 
edge-computing device, we integrated the first model within 
the Sensor Hub by exporting the model in an ONNX format 
and implementing data preprocessing through the solution, in 
Java format. Simulations of the fNIRS device driver were 
conducted in order to confirm that the preprocessing and 
prediction could run with continuously streaming data. Tests 
showed that the model could provide cognitive workload 
inference from the fNIRS signal within the one-sec latency 
requirement of the platform. This supports the operational 
relevance of favouring an edge-computing approach such as 
the one developed within this study. 

Overall, the study supports the possibility for real-time 
collection, extraction, preprocessing, and analysis of fNIRS 
data to infer cognitive workload. The opportunity to run an 
entire pipeline within an edge-computing device offers 
potential for adaptive teaming or for workload levels 
depiction on context-tailored dashboards to give actionable 
information on end users. This could provide many benefits 
for uses cases such as fitness for duty evaluation, 
neuropsychological status monitoring, personnel selection, 
and self-regulation biofeedback [7]. Future work will aim to 
integrate baseline capacities as well as models with epochs in 
the Sensor Hub. Model improvement will also be reached by 
collecting further data on real end users to train a more 
generalizable model from a dataset closer to relevant use 
cases. 
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