
How to Make a Neural Network Learn from a Small Number of
Examples – and Learn Fast: An Idea*

Chitta Baral1 and Vladik Kreinovich2

Abstract— Current deep learning techniques have led to
spectacular results, but they still have limitations. One of them is
that, in contrast to humans who can learn from a few examples
and learn fast, modern deep learning techniques require a large
amount of data to learn, and they take a long time to train. In
this paper, we show that neural networks do have a potential
to learn from a small number of examples – and learn fast. We
speculate that the corresponding idea may already be implicitly
implemented in Large Language Models – which may partially
explain their (somewhat mysterious) success.

I. FORMULATION OF THE PROBLEM

What is machine learning: a brief reminder. In many
practical situations, we want to learn how a quantity y
depends on the quantities x1, . . . , xn. We have several (K)
examples in which we know the values both of the values xi

and y, i.e., for each k = 1, . . . ,K we know the patterns
(x

(k)
1 , . . . , x

(k)
n , y(k)) for which y(k) ≈ f(x

(k)
1 , . . . , x

(k)
n )

for the unknown function f(x1, . . . , xn). Based on such
information, we want to reconstruct the desired function
f(x1, . . . , xn). This will enable us in the future cases
when we know the values x1, . . . , xn, to predict y as
f(x1, . . . , xn).

Main limitation of current machine learning techniques.
Deep learning algorithms have spectacular successes (see,
e.g., [1]), they enable computers to play chess and Go
much better than humans, they help us solve many practical
problems. However, in comparison to humans, the current
deep learning techniques have a severe limitation:

• to a human being, it is sufficient to have a few examples
(patterns), and without practically any delay we can
learn to distinguish cats from dogs, etc.;

• in contrast, a deep neural network requires a large
number of examples – thousands and even millions – to
start producing reasonable results, and even on modern
super-fast high-performance computers, it takes a long
time to train a neural network.

*This work was supported in part by the National Science Foundation
grants 1623190 (A Model of Change for Preparing a New Generation
for Professional Practice in Computer Science), HRD-1834620 and HRD-
2034030 (CAHSI Includes), EAR-2225395, and by the AT&T Fellowship
in Information Technology. It was also supported by the program of the
development of the Scientific-Educational Mathematical Center of Volga
Federal District No. 075-02-2020-1478, and by a grant from the Hungarian
National Research, Development and Innovation Office (NRDI).

1Chitta Baral is with the Department of Computer Science and
Engineering, Arizona State University, Tempe, AZ 85287-5406, USA,
chitta@asu.edu

2Vladik Kreinovich is with the Department of Computer Sci-
ence, University of Texas at El Paso, El Paso, TX 79968, USA,E
vladik@utep.edu

Comment. To be fair, it should be mentioned that while a
neural network usually takes a very long time to train, once
it is trained, it produces its results very fast. For example,
even in many applications involving solution to differential
equations, where algorithms are known, it is now much faster
to use a trained neural network to produce the solution than
to use the known algorithms.

What we do in this paper. In view of the above limitation,
it is desirable to come up with a machine learning tool that
will enable us to learn from a small number of examples –
and to learn fast, just like we humans do. In this paper, we
describe a proposal for designing such a tool.

Comment. We also speculate that this may already be hap-
pening for in-context learning systems such as GPT3 and
ChatGPT – that produce very reasonable answers to queries
already after 5-10 examples.

II. WHAT WE WANT

Let us describe what we want in precise terms. What we
would like to have is a universal computer system that:

• given a small number of examples from any area and a
new input,

• would generate a reasonable answer to this new input.
In mathematical terms, this means that this system should
take, as an input, the tuple X that contain all the input
information, i.e.,

X = (x
(1)
1 , . . . , x(1)

n , y(1), . . . , x
(K)
1 , . . . , x(K)

n , y(K),

x1, . . . , xn) (1)

and this system should return the value y corresponding to
the input x1, . . . , xn. For example:

• we should show this system several images of a cat
(i.e., images x

(k)
1 , . . . , x

(k)
n for which y(k) = 1), several

images of other animals (i.e., images x
(k)
1 , . . . , x

(k)
n for

which y(k) = 0), and a new image x1, . . . , xn,
• and the system should decide whether this new image

is the image of a cat (y = 1) or of some other animal
(y = 0).

Also:
• we should show, to this same system, many images of

vehicles indicating which of them are trucks and which
are not trucks, and then show this system a new picture
of a vehicle,

• and this system should tell us whether this new image
is truck or not a truck.



III. ANALYSIS OF THE PROBLEM

We know that we humans have this universal ability:
• given the corresponding input X ,
• to produce the corresponding value y – whether it is

about cars, about cars, or about something else.
In other words, we know that the values forming the tuple
X largely uniquely determine the desired value y. In math-
ematical terms, as we have mentioned, this means that there
exists a function y = F (X) that takes, as input, a tuple of
type (1) and returns the corresponding value y.

This formulation leads to the following natural idea.

IV. RESULTING IDEA

Natural idea. We have an unknown function F (X). We
know that neural networks are universal approximators, i.e.,
that for each reasonable function and each desired accuracy,
there exists a neural network that approximates the given
function with the desired accuracy.

So why not use a neural network to approximate this
unknown function F (X)?

Important comment. In the above statement, we overlooked
a somewhat minor but important point: that the universal
approximation theorem was proven for the case when the
number of inputs is fixed. In our case, the number of inputs
N forming a tuple X may be different depending on how
many examples K we have and how many inputs n are there
in each example:

• we have K examples with n+1 values in each of then,
and

• we have n values of a new example,
to the total of N = K · (n+ 1) + n.

So, to be able to apply the universal approximation result,
let us limit ourselves to the cases when we have a fixed
number of examples K and the fixed number of inputs n in
each example.

For example, we can limit ourselves to cases when we
have K = 10 examples with n = 4 inputs each. Then, in
each such case, we have tuples X with N = 10·(4+1)+4 =
54 inputs.

Resulting proposal. Suppose that we want to design a
computer system that will learn – in all possible application
areas – after being presented K examples. Ideally, we should
make this system really universal, i.e., it should be applicable
to all possible input sizes n. However, in this text, what we
are proposing is to do almost this – namely, to design a
system that only works for situations when we have a fixed
number of inputs n.

To design such a system, we do the following.
• First, in each of many different application ar-

eas, we collect a large number P of patterns
(x

(i)
1 , . . . , x(i), y(i)), i = 1, . . . , P corresponding to this

particular area. In most application areas, this is already
done, we already have many such example.

• Then, for each application area, many times, we select
K + 1 of these patterns i1, . . . , iK , iK+1 and use,

as X , the first K of these patterns and the inputs
corresponding to the (K + 1)-st pattern:

X = (x
(i1)
1 , . . . , x(i1)

n , y(i1), . . . ,

x
(iK)
1 , . . . , x(iK)

n , y(iK), x
(iK+1)
1 , . . . , x(iK+1)

n ).

As the value y = F (X) correspond to this tuple X ,
we use the value y for the (K + 1)-st pattern, i.e., y =
y(ik+1).

• Finally, we use all the resulting pairs (X, y) – corre-
sponding to different application areas and to different
selection of K + 1 patterns within each area – to train
a neural network that will produce, in all application
areas, y based on X .

What we expect. Once trained, this neural network will
transform each tuple X of type (1) into an appropriate value
y. In other words, it will:

• take a small number K patterns from some application
area and an input x1, . . . , xn, and

• generate the output corresponding to what we expect in
this particular application area.

In other words, this system will do exactly what we wanted:
produce reasonable answer after a small number K of
examples.

How fast will this system be? Training this neural network
may take forever. However, as we have mentioned earlier,
once this neural network is trained, it will produce its results
really fast. In other words, not only will the resulting system
learn from a small number of examples – it will also produce
its results practically immediately, just like we human do.
Again, this is exactly what we wanted.

Speculative comment. We were discussing how to design
a neural network that can learn from few examples – and
learn fast. But there are already networks that seems to be
doing this – namely, modern Large Linguistic Models like
GPT3 and ChatGPT. This ability of such models is largely
a mystery. So maybe the partial explanation of their success
is that these models are, in effect, already implementing the
above idea? (Of course, it does not explain their zero-shot
ability, when we get an answer without having any examples
to train on.)

Indeed, in contrast to the usual neural network that is
usually trained on examples from one application area, these
models are trained on all kinds of language examples, i.e.,
examples from all possible application areas – and, as we
have argued, such training is one of the main features that
can lead to such training-fast-on-few examples.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning”, MIT
Press, Cambridge, Massachusetts, 2016.


