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Abstract—Digital biomarkers (dB) provide valuable 

information for the continuous assessment of disease status in 

clinical practice. Hemodynamics is an important endpoint for 

evaluating a patient's status and, therefore, a continuous 

monitoring system using dB needs to be developed. In this study, 

we developed supervised learning modeling approaches for 

estimating hemodynamic scenarios of new patients using a time 

series dataset obtained from contact and contact-free sensors. 
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I. INTRODUCTION 

Monitoring the health and disease status of a patient is 
important for understanding disease mechanisms. The recent 
development of wearable devices has enabled us to measure 
vital data continuously and remotely, and such data are 
referred to as digital biomarkers (dpmo) [1]. Some recent 
studies developed estimation models for a patient’s condition 
or clinical outcome assessment using the measured values of 
dBM values. The developed estimators need to achieve a 
generalized performance for new patient prediction to use 
predictions in clinical practice. However, it has the challenge 
of being less accurate than predicting behavior in a new period 
within the same patient. In this study, we proposed the 
supervised-learning models and evaluated the generalized 
performance for hemodynamics scenario prediction for new 
patients using time series data obtained from contact and 
contact-free sensors. 

II. RELATED WORK 

Slapničar et al. [2] reported the branched artificial neural 
network architecture to predict hemodynamics scenarios for 
the random CV. However, the evaluation of the other machine 
learning modeling approach was insufficient. Therefore, we 
engineered estimators using several machine learning 
techniques and evaluated their prediction accuracy in person-
out CV. 

III. CLASSIFIER DEVELOPMENT FOR HEMODYNAMICS 

SCENARIOS 

We used a public dataset [3] obtained from previous 
research1. The dataset was collected from 30 healthy 
volunteers, and the subjects performed five different 
hemodynamic scenarios. This dataset contains bio-signal data 
measured simultaneously using contact sensors and contact-
free sensors, which have 12 channels (i.e., features). We 
considered a multi-class classification problem that predicts 
five types of hemodynamic scenarios. For data preprocessing, 
we divided the signals into window lengths of 20 s with a 10 
s overlap for each of the 12 channels of all subjects. Then, we 
normalized the values to obtain zero mean and unity variance. 
To evaluate the generalized performance, we used the person-
out CV approach. Fig. 1 shows examples of dataset splitting 
for random and person-out CVs. The random CV  that the 
previous study [2] used overestimates the performance of new 
patient prediction. This is because the randomly split data of 
the same subject can be included in both training and test 
datasets. The person-out CV approach can accurately evaluate 
the generalized performance because it splits the dataset into 
training and test datasets by each subject. 

Fig. 1. Example of train/validation and test dataset splitting.  (A) Random 

CV and (B) Person-out CV. 

1.https://figshare.com/articles/dataset/A_dataset_of_clinically_recorded_rad

ar_vital_signs_with_synchronised_reference_sensor_signals/12186516/2 
(accessed November 10, 2022). 

 

 



IV. EXPERIMENTAL RESULTS 

We developed the 1D convolutional neural network 
models with adaptive average pooling (Conv1D), the 
bidirectional LSTM (Conv1D-BiLSTM), and the transformer 
(Conv1D-Transformer). We compared the MLP architecture 
of the previous study [2] with our developed three deep 
learning models and the LightGBM. For the LightGBM, we 
performed 8 types of feature engineering (Max, Min, 
Differences, Mean, Std, SAD, Peak_count, Peak_rrstd) for all 
channels. In deep learning model development, we performed 
the grid search of those hyperparameters shown in Table 1. 
We optimized hyperparameters by running the five-fold CV 
and calculated the average of performance measures: micro-
accuracy, macro-recall, macro-precision, macro-F1, and 
macro-AUC. We set the learning rate to 0.0001, epoch size to 
50, and batch size to 64 for all deep learning models. 

Fig. 2 shows the architectures of the deep learning models 
when the macro-AUC was the best for person-out CV. Tables 
2 and 3 give the average performance measures for random 
and person-out CVs, and the bold font denotes the best scores. 
The LightGBM (N_FEATURES =96) and the Conv1D were 
the best macro-AUC performance for random CV (0.979) and 
person-out CV (0.936), respectively. The accuracy of the 
person-out CV was poorer than that of the random CV in all 
models. In particular, the MLP model strongly decreased 
prediction accuracy in the person-out CV compared with the 
random CV. On the other hand, the performance of our 
models using the 1D convolutional neural network had only 
slightly different among CV types. These results suggested 
that the information of individual sensor differences can be 
considered more effectively by convolution with a filter 
between each input channel. 

TABLE I.  THE SET OF HYPERPARAMETERS WE INVETIGATED 

Hyperparameters Investigated values 

N_FEATURES (LightGBM) [96, 72, 48, 24, 12] 

N_HIDDEN_LAYER (LSTM) 
[12, 24, 36, 48, 64, 78, 96, 

108, 120] 

N_LAYERS (TRANSFOMER) [2, 4, 6, 8, 10, 12, 14] 

CONV 1D_HIDDEN_CHANNEL 

[[12, 12], [24, 12], [12, 24], 

[24, 24], [48, 12], [48, 24], 
[12, 48], [24, 48], [48, 48]] 

ACTIVATION [ReLU, Tanh, GELU] 

NORM [BatchNorm, LayerNorm] 

NORM_IN_FIRST_CONV_BLOCK [True, False] 

Fig. 2. The best model architectures for person-out CV. (A) MLP, (B) 

Conv1D, (C) Conv1D-BiLSTM, and (D) Conv1D-Transformer.  

TABLE II.  MEAN PERFORMANCE MEASURES FOR RANDOM CV 

 Micro-

accuracy 

Macro-

recall 

Macro-

precision 

Macro-

F1 

Macro-

AUC 

MLP 0.795 0.795 0.793 0.787 0.944 

LightGBM 0.860 0.876 0.887 0.874 0.979 

Conv1D 0.860 0.860 0.884 0.862 0.970 

Conv1D-

BiLSTM 
0.856 0.856 0.880 0.858 0.974 

Conv1D-

Transformer 
0.869 0.869 0.883 0.870 0.978 

TABLE III.  MEAN PERFORMANCE MEASURES FOR PERSON-OUT CV 

 Micro-

accuracy 

Macro-

recall 

Macro-

precision 

Macro-

F1 

Macro-

AUC 

MLP 0.436 0.214 0.217 0.213 0.535 

LightGBM 0.709 0.617 0.700 0.631 0.902 

Conv1D 0.745 0.788 0.644 0.671 0.936 

Conv1D-

BiLSTM 
0.771 0.763 0.677 0.695 0.930 

Conv1D-

Transformer 
0.747 0.770 0.632 0.653 0.935 

V. CONCLUSIONS 

We aimed to develop a supervised-learning model for 
hemodynamics scenario prediction for new patients using 
time series data obtained from contact and contact-free 
sensors. We proposed three deep learning architectures using 
the 1D convolutional neural network models and compared 
them with the conventional MLP model to evaluate the 
generalized performance for random and person-out CVs. The 
experimental results for person-out CV showed that the 
Conv1D was the best performance and the MLP model 
strongly decreased prediction accuracy compared with 
random CV. We revealed that the information of individual 
differences of sensors can be considered more effectively by 
convolution with a filter between each input channel using 
Conv1D. This study provides valuable insights into the 
development of deep neural network models incorporating 
dpmo, which in turn contributes to the enhancement of patient 
health monitoring and a deeper understanding of disease 
mechanisms. 
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