
  

 

Abstract— We propose a neural decoding model with input 

embedding reflecting fNIRS data's spatial and temporal traits. 

Our model embeds fNIRS channels into new channels based on 

the fNIRS optode layout. The embedded data is passed to the 

classifier through the 2D convolution layer and the transformer 

encoder. The open dataset (mental arithmetic, BNCI Horizon 

2020) was trained to verify model performance. As a data 

preprocessing process, the 0.09Hz low-pass filter, data 

segmentation was performed, and then z-score standardization 

was applied. The average accuracy of leave-one-subject-out 

(LOSO) cross-validation (CV) was 90.19%, and the average 

accuracy of k-fold cross-validation was 81.78%. The proposed 

model resulted in the k-fold accuracy being lower than the 

LOSO accuracy. We checked the training loss graph and 

revealed an overfitting problem. One reason could be that the 

model parameter size is too large compared to the dataset. 

Another could be that the trained feature patterns are not very 

different because fNIRS data were measured only in the 

forebrain area. Therefore, the proposed model should be 

further applied and updated to other datasets measured in the 

whole brain region or different cortical areas. 

I. INTRODUCTION 

In the fNIRS-based neural decoding problem, fNIRS 
measures local cortico-activity, so it is necessary to configure 
the input space to encompass all spatiotemporal features. In 
the course of performing a task, activation of a particular 
neural region results in a change in cerebral hemodynamics, 
the amount of oxygen metabolism in that region. Through the 
fNIRS device, changes in cerebral hemodynamics can be 
confirmed by measuring the oxy-hemoglobin concentration 
(HbO) and deoxy-hemoglobin concentration (HbR) [1]. 
Therefore, the spatial location information of the fNIRS 
channel is essential information that can confirm the structural 
characteristics of brain activity in the area. 

Attempts have been made to learn spatial information of 
brain signals in a deep learning model. One research [2] 
classifies 72 visual stimulation tasks using the topography of 
multi-channel EEG signals as input data for artificial 
intelligence models. This research uses CNN to learn spatial 
information but fails to consider the correlation between 
distant channels. Another research [3] uses multi-channel 
fNIRS signals as input in channel-wise and spatial-wise 
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formats. In the spatial-wise format, consecutively numbered 
channels were embedded into one channel using CNN, and the 
channel was numbered regardless of the structural position of 
the brain. Therefore, existing multi-channel EEG/fNIRS 
-based deep learning methods do not consider connectivity 
between all channels, so there is a limit to expressing cerebral 
cortex networks. 

We propose a neural decoding model with input 
embedding reflecting fNIRS data's spatial and temporal traits. 
Our model uses a transformer encoder and spatial embedding, 
considering the optode layout. The transformer-based model is 
better for evaluating the correlated features between 
non-adjacent and distant channels because it inherently 
possesses the multi-head self-attention layer. Input 
embeddings that reflect the layout form of the optode are 
expected to improve model performance because the channel 
of fNIRS consists of a pair of optodes called transmitters and 
receivers. 

II. METHOD AND DATA 

A. Open dataset 

We decided to use the mental arithmetical dataset of BNCI 
Horizon 2020 [4] among the three datasets used by Wang [3]. 
Wang used the flooding technique to increase the accuracy of 
the model. Since Wang did not apply flooding to only one of 
the three datasets, using this dataset would be appropriate for 
comparison. 

The dataset consists of fNIRS data obtained from eight 
subjects. In the experiment, a mental arithmetical task was 
performed for 12 seconds, and then a rest was performed for 
28 seconds. The subject performed a task by looking at the 
formula appearing on the black screen, and a green bar was 
displayed on the screen before and after the formula appeared. 
A total of 174 mental arithmetical tasks and 174 rest sections 
were performed. 

B. Preprocessing 

As a data preprocessing process [3], the frequency band of 
0.09Hz or more was removed through the 4th-order low-pass 
Butterworth filter, data segmentation was performed, and then 
z-score standardization was applied. 

The task and rest segments were set to 14 seconds [3], 
respectively. The task segment included 2 seconds after the 
12-second task was completed considering the delay in which 
the effect of the task was reflected in the fNIRS signal. The 
rest period was set from 4 seconds to 18 seconds after 
completing the task. 

C. Model Structure 

The data after preprocessing is the channel-level 
representation. Dimension of the data is (Batch, fNIRS 
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Channel, Time, HbO/HbR). The data is used as an input to the 
embedding models for the spatial-level representation. Two 
types of embedding modules are used: optode-wise 
embedding modules and region-wise embedding modules. 

The two modules embed some neighbor fNIRS channels 
into a new channel using the depth-wise convolution layers 
corresponding to 3x3 and 5x5 sized grids, respectively, based 
on fNIRS optodes. 

The embedded data and channel-level representation are 
passed to the classifier through the transformer module. Each 
transformer module comprises a 2D convolution layer and the 
transformer encoder. Kernel size and stride of 2D convolution 
is (channels=1, time=30), (channels=1, time=4). 

The classifier module combines the CLS-token of several 
transformer modules into a single vector in the concat layer. 
The vector is converted into a predicted value through a linear 
layer and a softmax layer. 

III. RESULT 

As a result of the learning, the average accuracy of 
leave-one-subject-out (LOSO) cross-validation (CV) was 
90.19%, and the average accuracy of k-fold cross-validation 
was 81.78%. A five-fold CV was performed five times, and 
the average accuracy of 25 results was used. 

TABLE I. LOSO CV Result 

 

TABLE II. K-fold CV Result 

 

IV. DISCUSSION 

Typically, the accuracy of the k-fold CV is supposed to be 
higher than that of the LOSO CV. Still, the proposed model 
resulted in the k-fold accuracy being lower than the LOSO 
accuracy. 

We checked the training loss graph and revealed an 
overfitting problem. The reason could be that the model 
parameter size is too large compared to the complexity of the 
problem (i.e., binary classification between rest state and task 
state) to be solved in the open dataset. Another could be that 
the trained feature patterns are similar because fNIRS data 
were measured only in the forebrain area, a functionally and 
structurally identical cortical region. 

Therefore, the proposed model should be further applied 
and updated to other datasets [5, 6] measured in the whole 
brain region or different cortical areas. 

Figure 1. Overall Model Structure 
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