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Abstract—We consider the trend or pattern forecasting for 
demand timeseries in a business-to-business supply chain where 
demand exhibits high volatilities, non-stationarities, and skewness. 
We develop a pattern forecasting system by designing a data 
driven, feature dependent Markov chain-based framework. To 
increase adoption of AI based techniques among the various 
stakeholders we address the aspect of explainability. We define 
two metrices to evaluate the quality of explainability. To provide 
guidelines on selecting different attributes of our pipeline, we 
compare between feature selection methods from two families, one 
advanced and one traditional. We evaluate the proposed strategy 
on a real dataset and observe a sparsity promoting feature 
selection show a sparse feature selection method outperforms a 
conventional decision tree-based feature selection method. 
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I. INTRODUCTION 

This paper deals with the pattern forecasting of demand 
timeseries for B2B industrial products [1], which is less 
explored and often remain esoteric to the practitioners as 
compared to retail B2C products. Typically, the demand for 
different types of B2B products is highly volatile, nonstationary 
and comes from a wide class of statistical distributions. The 
supply chain managers require the pattern forecast that is used 
in upstream decision support systems as only numerical forecast 
may have unacceptable errors. On the other hand, for companies 
with well-established traditional business processes 
implementing black-box machine learning (ML) based 
approaches is particularly challenging. This can be addressed by 
providing explainability to the business users to establish 
connection with their domain expertise and thereby build trust 
in the advanced ML technologies [2]. Our contributions are 
twofold. Firstly, we propose a method for encoding a continuous 
variable to a discrete number of states and model the transitions 
across different states through a data driven feature dependent 
Markov chain (FDMC). Secondly, we propose a strategy for 
quantitative modeling of the pattern of interest through a score 
as a function of the respective entries in the transition 
probability matrix (TPM) corresponding to the Markov chain. 
Thereafter based on that score we quantify the likelihood of 
emergence of the pattern of interest and propose a method to 
explain that likelihood based on the input features to provide 

additional insights to domain experts and gain their trust. Fig.1 
given below describes the system architecture. 

 
Fig. 1. System architecture 

II. FEATURE DEPENDEND MARKOV CHAIN BASED PATTERN 

MODELING 

We now present the framework to model different user 
defined patterns through versatile, widely adopted discrete time 
Markov chain (DTMC) model. More formally, a DTMC is a 
stochastic process { , 0,1,... },tY t T where tY is the state at time 
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where ,i jP is independent of the timestep and of past history. 

The transition probability matrix (TPM) associated with any 
DTMC is a matrix, Pt, for timeslot t, whose (i, j)th entry ,i jP

represents the probability of going to state j on the next 
transition given the current state is i. We adopt the method 
proposed in [3] to compute the TPM through a set of features 
that may be considered as a data driven approach with a 
specified feature matrix for every timeslot under consideration, 
referred to as FDMC for the rest of this paper.  

III. EXPLAINABILITY 

This paper provides two metrices to evaluate the quality of 
the explainability namely, i) relevance, and, ii) informativeness. 
Relevance is defined as the extent to which the explanation is 
consistent with the inherent physical process and is evaluated 
based on user feedback/annotations. Informativeness is defined 
as the amount of information contained in the explanation. We 
measure this by the sharpness of feature attributes such as the 



variance in the importance score. Higher the variance higher is 
the information content. A popular framework for interpreting 
predictions, namely SHAP is used for explainability [4]. Our 
input data is high dimensional where the number of columns is 
much higher than number of rows, therefore the value of the 
appropriateness in choosing the feature selection method is 
significantly high. We leverage a recently developed lasso type 
feature selection method that enforces feature sparsity, 
controllability, namely LassoNet [5], referred to as LN-FS and 
compared the performance with a conventional method based 
on decision tree; referred to as DT-FS in terms of accuracy and 
explainability.       

IV. EXPERIEMNTAL SETUP AND RESULTS  

We consider the sales of a generic purpose industrial 
component as the variable whose trend is to be predicted. In our 
dataset we have 56 months demand and 96 related indices used 
as features, referred to as X1 to X96. The first 50 months are used 
as training set and remaining 6 are used as testing set in which 
the performance of the model is evaluated. A three state FDMC 
is leveraged where the TPM for timeslot t is a 3×3 matrix. First 
9 months is used to train the FDMC. In this experiment we 
model the nature or intensity of the change that we call as, i) 
steady state, ii) moderate fluctuation, and, iii) drastic fluctuation, 
respectively.  

( (1,1) (2,2) (3,3))1 1 ,  for .t t tp p p
t e t                        (2) 

( (1,2) (2,1) (2,3) (3,2))2 2 ,  for .t t t tp p p p
t e t                (3) 

( (1,3) (3,1))3 3 ,  for ,t tp p
t e t                                (4) 

where the constants i is used to rationalize the scores. Equation 
(2) is a function of diagonal entries of Pt that corresponds to 
transition to same state. Equation (3) is a function of 
probabilities corresponding to transitions between adjacent 
states. Finally, equation (4) represents a function of 
probabilities corresponding to transitions between non-adjacent 
states. The scores corresponding to different states are 
computed by normalizing with respect to the total score and is 
obtained by: 
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Fig. 2. Actual vs prediction of classes through FDMC 
 

where ,S M
t t  and D

t denotes the scores corresponding to 
steady state, moderate fluctuation, and drastic fluctuation, 
respectively. We make the prediction based on the maximum 
among these in (5). Fig.2 shows the actual demand, respective 

fluctuation type and the fluctuation type predicted, that can be 
considered as classes. The prediction accuracy obtained with 
DT-FS and LN-FS are 0.5 and 0.67, respectively.  
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Fig. 3. Experiment-1: SHAP values of features: (a) DT-FS, (b) LN-FS  

TABLE I.  COMPARISON BETWEEN DIFFERENT FEATURE SELECTION 
METHODS 

Feature 
selection  

SHAP-
Variance 

Accuracy F1-Score 

DT-FS 8.36×10-6 0.5 0.43 

LN-FS 0.38 0.67 0.51 

 

Fig. 3 shows the contributions from top influencing features, 
where X95, X45 are the indices related to global semiconductor 
market that is very relevant to the product under consideration. 
The feature contributions are quite relevant and informative. The 
variance in the SHAP values is much higher with LN-FS than 
DT-FS, that corresponds to informativeness of explainability. 
We observe that both in terms of explainability and prediction 
accuracy LN-FS outperforms DT-FS.  

V. CONCLUSIONS 

In this paper we focused on pattern modeling and 
forecasting for demand timeseries of B2B products by encoding 
the continuous variable (demand) to discrete number of states 
and modeling through a data driven feature dependent Markov 
chain. From the entries of the transition probability metrices 
(one for each timeslot), the score corresponding to a specific 
pattern of interest is appropriately quantified. Thereafter we 
developed methods for explaining the forecasting of specific 
user defined patterns through a popular method for post hoc 
explainability. We performed a case study with real world 
dataset and compared two feature selection methods for fitting 
the feature dependent Markov chain and show a sparse feature 
selection method outperforms a conventional decision tree-
based feature selection method. 
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