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Abstract—In this paper, a Vision Transformer Model with
Compressive Sensing for crowd density level classification is
proposed. Crowd density level classification is an important
crowd monitoring task that is widely used in public places.
However, the performance of existing methods degrades when
dealing with heavily occluded scenes because they have difficulty
in extracting complete and accurate crowd features. To solve this
problem, we perform compressed perception on selected image
blocks after removing occlusions, and then feed the results into
the transformer backbone network, which outputs classification
results from the density classification task head. We conducted
experiments in a typical occlusion scenario of subway cars, and
the results show that our approach achieves relatively good
results.

Index Terms—vision transformer, compressive sensing, crowd
density classification

I. INTRODUCTION

In recent years, video surveillance systems in many places
have provided a good way to collect data for crowd density
monitoring and analysis. Analyzing crowd density, as an
important task of crowd monitoring, is widely used in public
places such as subways, shopping malls, stations and squares.
In large-scale crowd flow in public places, counting by hand
is slow and inaccurate, which can easily lead to dangerous
situations like crowding and trampling. Therefore, the use of
intelligent video surveillance technology to monitor crowd
density is a necessary choice.

In the actual crowd density classification application,
crowd density estimation also faces many challenges, such as
the occlusion problem. The occlusion problem occurs when
in an image or video, objects or people block part or all
of the human body, making it hard to extract and estimate
crowd features. The subway car, shown in Figure 1, is a
typical scene with serious occlusion problems. Subway cars
have limited space and high frequency of people flow. This
often causes a large number of occlusions between people
and objects such as handrails and railings. These occlusions
make images or videos show only partial or scattered features
such as heads, bodies, and postures. Therefore, complete and
accurate crowd information cannot be obtained.

There are two main categories of existing crowd den-
sity classification methods: detection-based methods and
regression-based methods. The detection-based methods refer
to the method of locating each person in an image or video,
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Fig. 1: Occlusion in the subway car scene. The head infor-
mation is obscured by the railing in (a); the crowd density
increases and the crowd is heavily obscured in (b).

and then counting the number of people and calculating
the density. This type of method performs better in sparse
or medium-density crowd scenes, but in high-density or
severely occluded scenes, they are prone to missed or false
detection due to the difficulty of the detector to locate
each head or body, which leads to inaccurate estimation
results. Regression-based methods are methods that learn
the mapping relationship between image or video features
and the number of people or density, and then directly
output the estimation results. This type of method performs
better in high-density or heavily occluded scenes, but there
are some problems. For example, how to deal with crowd
features of different scales and distributions, how to reduce



the complexity and resource consumption of the model, etc.
To address the above problems, this paper proposes an im-

age density classification method based on compression per-
ception and ViT (Vision Transformer). As a pre-processing
method for downscaling and sparsification of input images,
compression perception has also been introduced into the
study of crowd density estimation in recent years. The core
idea of compressive perception is to exploit the sparsity of the
signal in a certain transform domain, and then to randomly
subsample the signal at a density sparser than the sampling
density required by the Nyquist sampling frequency. By using
a special reconstruction method, the original signal can be
recovered. This can realize the process of data compression
during the sampling process and break the golden rule in
signal processing - Nyquist’s law of sampling. We use ViT
[1] as the backbone model for density classification to further
improve the effectiveness of crowd density classification.
Because CNN relies on local texture information and ignores
global and local contextual relationships, existing methods
usually use convolutional neural networks as the backbone
model, but the performance of CNN degrades when process-
ing images with occlusions and texture changes. For the oc-
clusion problem, [2] found that the Transformer-based model
is significantly more robust than the CNN-based model. Our
approach requires detection and removal of occluded regions
from the image. Then, we segment the removed image
into multiple sub-blocks and perform feature extraction and
classification for each sub-block. ViT with its powerful self-
attention mechanism and multi-headed attention mechanism
can fuse the features between different sub-blocks to improve
the accuracy and robustness of classification. This is because
the removed images may have missing or discontinuous
information.

II. METHOD

The method proposed in this paper has three main mod-
ules: compressive sampling, ViT encoding, and a density-
level classification task head. Firstly, the occluded objects in
the image are removed, and then the removed image is chun-
ked, and each sub-block is input into the compressive sam-
pling module for processing to obtain the measurement value
of each sub-block. Secondly, the obtained measurements are
input into ViT backbone network for feature extraction and
classification, and the final classification results are obtained
after the density level classification task head.

The compressive sampling module is divided into two
main parts, sampling and reconstruction. In the traditional
compressed sensing method, assuming a one-dimensional
sparse signal x ∈ RN and a measurement matrix Φ ∈
RM×N , the measurement value y = Φx, where y ∈
Rm(M ≪ N). To recover the signal x from the measurement
value y is to solve the l1 parametric optimization problem.
However, two-dimensional images are more informative,
and obtaining the whole projection for the whole image
with the measurement matrix will make the projected data
larger and require more storage space. This also leads to

an exponential increase in the computational complexity of
image reconstruction. The block-based compressive sensing
(BCS) method is proposed to solve this problem. BCS is
a lightweight compressive sensing method that divides the
image into equal-sized, non-overlapping image blocks instead
of processing the whole image. Then, each image block
is sampled and reconstructed using a small measurement
matrix.

The image X of size S is divided into N image blocks
of size B × B. The i-th image block is xi, then X =
[x1, x2, x3, ..., xN ], the block-based measurement matrix is
ΦB , and the measurement value of each block is yi = ΦBxi.
where ΦB ∈ RMB×B2

, MB = cs × B2/S is the number
of samples per sub-image block, and cs is the compression-
aware ratio. Finally the compressed sampling module gets the
measurement Y = [y1, y2, y3, ..., yN ] of the whole image, i.e.
the output of compressed sampling is Y = ΦBX .

The measurements obtained by compressive sampling are
used as input to the ViT encoding module, and information
features are extracted from the serialized measurements.
the ViT encoding module contains a linear projection layer
and multiple transformer encoder layers. Each Transformer
Encoder layer contains two sub-layers: a multi-headed self-
attentive mechanism and a multi-layer perceptron. Each sub-
layer is followed by a residual join and a layer normalization.
The output of the image measurements input to the linear
projection layer is Z0 = Q+P = WBY +P . The transformer
encoder layer takes Z0 as input, and each layer contains
a multi-headed self-attentive mechanism and a feedforward
neural network, as well as residual connections and layer
normalization, as shown in the following equations:

Z
′l = MSA(LN(Zl)) (1)

Zl = MLP (LN(Z
′l)) + Z

′l, l = 0, 1, 2, ...,K − 1 (2)

Where K is the number of layers of the Transformer layer,
the output matrix Z of the last Transformer Encoder layer is
used as the output of the whole Transformer encoder for the
subsequent density level classification task.

The density level classification task header contains two
linear projection layers and a layer normalization. The input
is a 768-length class token ZK = [Z1, Z2, Z3, ..., ZN ], where
N is the number of classes, and the final output is the density
rank of the judgment.

We collected and compiled a dataset of subway car scenes
and experimentally showed that with a compression ratio of
10%, an accuracy of 95.969% could still be achieved.
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