
  

  

I. INTRODUCTION 

In the field of multimedia, various electroencephalogram 
(EEG) studies have been reported in the context of 
brain-machine interface research. Recently, Neuralink has 
demonstrated a prototype wherein they invasively measured 
the brainwaves of a primate and showed that it was possible to 
control the bar in the Pong Game merely by thought. However, 
this method, which involves the surgical installation of 
electrodes inside the skull for measuring brainwaves, poses 
difficulties for application to the people. Therefore, in this 
study, we designed a non-invasive EEG-based brain-machine 
interface and applied it to the Pong Game. In particular, we 
demonstrated that it is possible to decode the intention of 
manipulation directly, not through motor imagery, by 
measuring signals solely from the prefrontal cortex, unlike 
traditional brainwave decoders that use sensory-motor signals. 

II. METHODS 

In this study, we measured EEG signals using the 
OpenBCI equipment. While OpenBCI provides up to 16 
electrode channels, we only utilized the F7, F3, Fp1, Fp2, F4, 
and F8 channels for measuring prefrontal cortex brainwaves, 
corresponding to user intention signals. The sampling rate of 
the EEG measurement equipment was fixed at 125Hz. We 
collected EEG data from a total of 10 participants (20s, BMI 
inexperienced, healthy individuals), measuring 30 minutes per 
participant over 16 days, for a total of 480 minutes per 
participant, to train the decoder model. The OpenBCI used in 
this study measured data at a sampling rate of 125Hz, with a 
buffer of 0.5 seconds, resulting in time series data of lengths 
62-63 per buffer. 

EEG data preprocessing used six buffers of time series 
data, each with a window time of 3 seconds, and the window 
was shifted by 0.5-second bins. The preprocessing involved 
the application of a high-pass filter that passed signals of 1Hz 
or higher and a low-pass filter that passed signals of 60Hz or 
lower. A 60Hz notch filter was then applied to remove line 
noise. Subsequently, to extract features from the EEG data, we 
applied band-pass filters that passed the 0.5-4Hz, 4-8Hz, 
8-12Hz, 12-30Hz, and 30-45Hz ranges, extracting four 
features corresponding to delta, theta, alpha, and beta waves. 

The machine learning model used for decoding the 
brainwaves was a linear regression model, chosen for its 
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relatively fast execution speed which enables real-time data 
processing. We preprocessed the EEG data measured when 
the participant thought about commanding the game bar to 
move up or down, extracted brainwave features, and used the 
concurrently recorded class data to train the machine learning 
model to decode the user's brainwaves. 

For effective brainwave decoding, we designed a EEG 
decoder following the Reservoir Computing Paradigm. In this 
decoder, the readout was designed to follow a Gaussian 
distribution, representing the selectivity of the decoding 
direction with dynamics similar to simple cells. 

III. RESULTS 

For each of the 10 subjects, we constructed separate 
models for decoding EEG and carried out a total of six games, 
each lasting 3 minutes. This was done under various 
conditions, combining difficulty levels of 0.1, 0.5, and 0.9 
(with 0 indicating a high directional automatic guidance ratio) 
and bar movement speeds of 5 and 6. We repeated this process 
10 times to measure the results. During gameplay, we 
recorded instances of the AI blocking the ball (AI_Hit), the 
user blocking the ball (User_Hit), the AI missing the ball 
(AI_Miss), and the user missing the ball (User_Miss) for 
performance evaluation. 

Tables 1 and 2 show the results of AI and user Hits and 
Misses. In the case of AI, the variance was relatively low at 
3.82 and 3.91, showing similar performance regardless of the 
game's difficulty or speed. In terms of misses, the AI averaged 
6.5 misses, while human users averaged 3.48, indicating that 
users missed fewer balls. 

Table 3 provides results based on difficulty. It 
demonstrated differences between the AI and users across all 
difficulty levels. As difficulty increased, the average number 
of Misses by the user also increased, reducing the average 
difference in the number of missed balls between the user and 
the AI. 

Table 4 reveals results from varying the bar's movement 
speed (speed) at different difficulty levels. When the bar's 
movement speed was increased from 5 to 6, both human and 
AI Hits showed an increasing trend. At a difficulty of 0.1, AI 
Hits increased from 9.9 to 12.6, while user Hits rose from 10 
to 13.8. However, while AI Misses also increased from 6.6 to 
7.3, user Misses decreased from 3.6 to 2.7. This trend was 
consistent across different difficulty levels. Moreover, when 
the bar's movement speed was 6, both the AI and user Misses 
tended to increase as the difficulty increased. At a bar's 
movement speed of 5, the trend of AI and user Misses differed. 
As the difficulty level increased, user Misses increased, but AI 
Misses decreased. Solely considering misses, users missed 
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fewer balls at difficulty levels 0.1 and 0.5, but missed more 
balls at a difficulty level of 0.9. 

IV. DISCUSSION 

This study implemented a multimedia application system 
that enables a game of MindPong using a brain-machine 
interface (BMI) based on EEG. Notably, we used EEG 
applicable even to the general public and used only electrode 
channels corresponding to the prefrontal cortex, enhancing 
usability. The artificial intelligence model for decoding EEG 
in the BMI used a linear regression model capable of real-time 
processing. Consequently, the proposed BMI obtained equal 
or higher scores in battles against an AI that moved on the 
optimal path controlled solely by brainwaves. Thus, this study 
not only suggests the feasibility of developing multimedia 
game interfaces using EEG but also demonstrates that the 
results of this research can be applied to various multimedia 
interfaces. 

TABLE I.  RESULTS OF AI VS. USER HIT 

 AI_Hit User_Hit 

Mean 11.2 12.18 
Variance 3.82 9.41 

  

TABLE II.  RESULTS OF AI VS. USER MISS 

 AI_Miss User_Miss 

Mean 6.5 3.48 
Variance 3.92 3.98 

  

TABLE III.  RESULTS OF AI VS USER (DIFFICULTY) 

Difficulty = 0.1  AI_Hit User_Hit AI_Miss User_Miss 

Mean 11.25 11.9 6.95 3.15 

Variance 3.78 11.25 4.89 4.45 

Difficulty = 0.5 AI_Hit User_Hit AI_Miss User_Miss 

Mean 10.7 12.05 6.85 4.6 

Variance 3.06 10.16 2.45 21.73 

Difficulty = 0.9  AI_Hit User_Hit AI_Miss User_Miss 

Mean 11.65 12.55 6.5 6.15 

Variance 4.56 7.84 8.68 13.08 

  

TABLE IV.  RESULTS OF AI VS. USER HIT 

Difficulty = 0.1 
Speed = 5 AI_Hit User_Hit AI_Miss User_Miss 

Mean 9.9 10 6.6 3.6 
Variance 2.32 1.78 5.82 5.16 

Difficulty = 0.1 
Speed = 6 AI_Hit User_Hit AI_Miss User_Miss 

Mean 12.6 13.8 7.3 2.7 
Variance 1.60 13.96 4.23 3.79 

Difficulty = 0.5 
Speed = 5 AI_Hit User_Hit AI_Miss User_Miss 

Mean 9.5 9.9 6.2 5.5 
Variance 1.17 3.88 2.18 21.39 

Difficulty = 0.5 
Speed = 6 AI_Hit User_Hit AI_Miss User_Miss 

Mean 11.9 14.2 7.5 3.7 
Variance 2.10 7.29 2.06 22.68 

Difficulty = 0.9 
Speed = 5 AI_Hit User_Hit AI_Miss User_Miss 

Mean 10.3 10.5 5.4 6.8 
Variance 2.46 1.83 6.27 8.40 

Difficulty = 0.9 
Speed = 6 AI_Hit User_Hit AI_Miss User_Miss 

Mean 13 14.6 7.6 5.5 
Variance 3.11 5.38 9.38 18.28 

 


