
  

 

Abstract— This paper introduces a novel method, called 
robust nonlinear state space modeling (RNSSM), for predicting 
hemodynamic responses in fluid resuscitation. The RNSSM 
approach integrates autoencoder learning and Gaussian 
inference in a unified framework to address the challenges 
associated with identifying reliable models with limited and 
noisy critical care data. Simulation results demonstrate the 
initial feasibility and performance evidence of the RNSSM 
approach, which serves as a digital twin of an animal study, in 
fluid resuscitation scenarios.   

I. INTRODUCTION 

Fluid resuscitation is a medical intervention for 
stabilizing critically ill patients in hypovolemic scenarios. 
Current fluid management protocols are ad hoc strategies that 
lack sufficient accuracy to adequately adjust fluid dosing in 
different clinical scenarios, leading to increased risk of 
adverse effects [1-3]. While machine learning algorithms 
have been leveraged for dose-response modeling, they mostly 
rely on population-based data, limiting their applicability to 
individual subjects [3]. In our previous study, we designed an 
individual-based fluid dosing algorithm using model-free 
reinforcement learning (RL). The model-free RL control 
approach provided promising results, but it required 
substantial data for training and showed inferior performance 
in the presence of clinical disturbances [4].  

This paper presents a novel method, called robust 
nonlinear state space modeling (RNSSM), for predicting 
hemodynamic responses in fluid resuscitation. It integrates 
the autoencoder learning and variational Gaussian inference 
(VGI) in a unified framework to develop subject-specific 
models for limited, noisy critical care data. 

II. METHODOLOGY  

We combine the autoencoder learning and VGI to predict 
individualized mean arterial pressure (MAP) responses to 
fluid infusion in hemorrhage scenarios. Consider a multiple-
input-multiple-output nonlinear state space model in a 
general form: 
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where xn
k x  represents the hidden state variable, 

un
k u  denotes the observed input, and yn

k y  
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represents the measured output. The functions  .f  and 

 .g  capture the state transition and output measurement, 

respectively, and n   represents a vector of unknown 
parameters. The terms kv  and k  account for process and 

measurement noise, respectively. 
We utilized autoencoders, a type of artificial neural 

network (ANN), for learning state space models. The 
autoencoder learns a compressed representation of the input 
data and reconstructs data back to their original form. We 
adopt a specific autoencoder structure that learns a nonlinear 
state space representation of the subject-specific input-output 
data [5]. Suppose a dataset of input-output 

 1 2 1 2, , , , , , , N NZ u u u y y y   , where ku  is the vector of 

inputs (fluid dosages) and ky  is the vector of measured 
outputs (MAP responses). The objective is to find optimal 
values for functions :  xI nne   , :  u x xn n nf     , 

and :  yx
nng    by minimizing the following fitting 

criterion:  
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where e , f , g , are the functions describing the encoder, 

bridge, and decoder models, Z  is the training dataset, 
2: ynL    is the loss function, y  is the measured input 

and ˆky  is the predicted output. The information 

vector 1 1 , , , , ,
a bk k k n k k nI y y u u         represents a subset 

of the training dataset used to train the encoder. It consists of 
previous outputs and inputs from a specific time step, k , up 
to a certain number of previous steps ( an  for outputs and bn  

for inputs).  
To obtain an acceptable mismatch between the predicted 

value, ˆky , and the measured value, ky , we need to design a 
suitable ANN architecture for training these functions. The 
autoencoder model, used in this work, consists of three main 
components: (1) A multilayer ANN encoder for predicting 

kx  from kI ; (2) A multilayer ANN decoder for predicting 

ky  from kx ; and (3) A bridge network, also a multilayer 

ANN model, for modeling the function f  that maps kx  to 
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1kx  . The state 1kx   is constructed by a second autoencoder 

that maps Ik  to 1kx   and 1ky  . 

By incorporating VGI into the autoencoder learning, our 
goal is to effectively capture uncertainties within the model. 
In this methodology, the latent vector, the lower dimensional 
layer of the autoencoder, is represented by the mean and 
standard deviation of each latent variable. Also, a similarity 
loss is added to the primary loss function of the network, 
ensuring that the latent space adheres to a Gaussian 
distribution. Parameters of the variational distribution are 
estimated using the Kullback-Leibler (KL) divergence [6]: 
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where x  and x  are the mean and standard deviation of the 
latent vector. The total loss function is defined as:  
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where kO  is the output data, ˆ
kO  is the predicted output of 

the first decoder, 1 
ˆ

kO  is the predicted output of the second 

decoder, and *
1 kO  is the output of the second decoder when is 

fed by *
1 kx  , the predicted output of the bridge network. Also, 

2 2
, ˆL x x  and 1L  is defined as: 
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The schematic of the model is illustrated in Fig. 1. 

III. RESULTS 

The training dataset for RNSSM models was obtained 
from an animal study conducted at the Resuscitation 
Research Laboratory, University of Texas Medical Branch 
[3]. The study involved different sheep undergoing high and 
medium hemorrhage scenarios along with fluid infusion. The 
MAP measurements were recorded every 5 minutes, the input 
data was fluid infusion, and the output data was MAP. The 
RNSSM model comprised three modules: encoder, decoder, 
and bridge, each with two hidden layers of 30 neurons.  

Fig. 2 shows the predicted MAP against the measured 
MAP for a sample subject, demonstrating the capability of 
RNSSM models to predict MAP responses in fluid 
resuscitation. Table I represents the performance metrics, 
including root mean square error (RMSE), mean absolute 
error (MAE), and median absolute percentage error 
(MDAPE), evaluated for all subjects. Results of Fig. 2 and 
Table I indicate that the RNSSM model is able to effectively 
capture the trend and fluctuations of MAP response during 
hemorrhage resuscitation and encourage further 
investigation and refinement of the RNSSM framework. The 
proposed method can potentially tackle the issues caused by 
the noise and external disturbances, as well as the limited 
data availability. 

 
Figure 1.  Robust nonlinear state space modeling (RNSSM) approach 
integrating autoencoder learning and variational Gaussian inference (VGI) 
for identification of limited, noise-distorted fluid rescsitation data 

 

Figure 2.  Measured and predicted MAP responses using RNSSM 

TABLE I.  PERFORMANCE METRICS FOR ALL ANIMAL SUBJECTS 

 RMSE (%) MAE (%) MDAPE (%) 

MEAN 5.29 2.89 0.94 
STD 3.10 1.55 0.40 

IV. CONCLUSION 

The RNSSM framework, integrating autoencoder 
learning and VGI, was developed for predicting 
hemodynamic responses in fluid resuscitation. Initial results 
implied the feasibility of the proposed approach for 
identifying reliable models from noisy, limited critical care 
data. Initial results encourage further investigation of the 
approach against existing digital twin models. Also, the 
robustness of RNSSM models in the presence of uncertainties 
should be further investigated in the near future. 
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